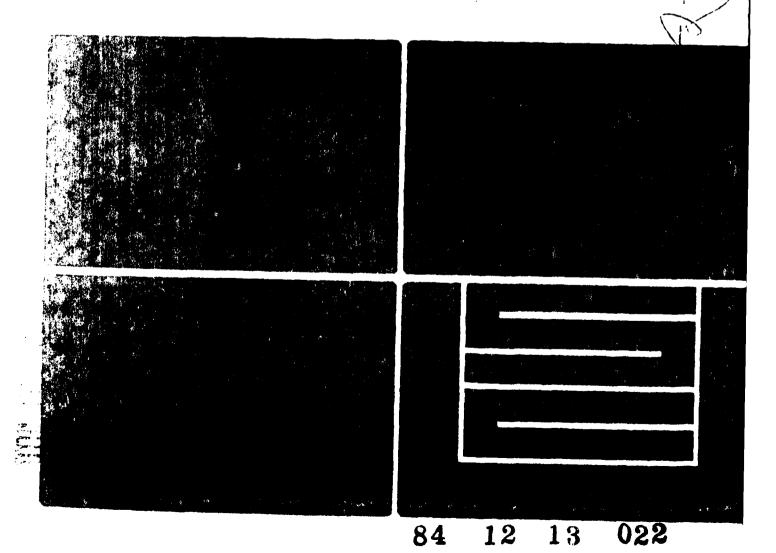

AD-A148 752 SMALL-SAMPLE PROPERTIES OF KERNEL DENSITY ESTIMATORS 1/1 FROM RANDOMLY RIGHT—. (U) SOUTH CAROLINA UNIV COLUMBIA DEPT OF MATHEMATICS AND STATISTI. M J PADGETT ET AL. UNCLASSIFIED OCT 84 TR-102 AFOSR-TR-84-1153 F/G 12/1 NL

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

REPRODUCED AT GOVERNMENT EXPENSE

Impartment of Mathematics and Statistics
The University of South Carolina Columbia, South Carolina 29208

AFOSK CLEVE OF LAND 12 TO S


AD-A148 752

SMALL-SAMPLE PROPERTIES OF KERNEL DENSITY ESTIMATORS FROM RANDOMLY RIGHT-CENSORED DATA

þν

W. J. Padgett 1 and D. T. McNichols 2

University of South Carolina Statistics Technical Report No. 102 62005-11

SMALL-SAMPLE PROPERTIES OF KERNEL DENSITY ESTIMATORS FROM RANDOMLY RIGHT-CENSORED DATA

by

W. J. Padgett and D. T. McNichols 2

University of South Carolina Statistics Technical Report No. 102 62G05-11

October, 1984

10 75 Chief, Twomer or a promitivision MATT SAME

¹ Department of Mathematics and Statistics, University of South Carolina, Columbia, SC 29208. Supported during the revision of this paper by the U. S. Air Force Office of Scientific Research and Army Research Office under grant number AFOSR-84-0156.

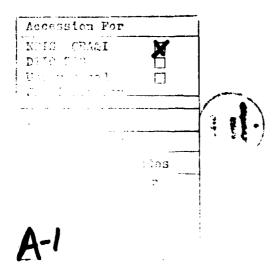
² Department of Statistics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061.

Caraca Caricalitical Calcal Crick Calcal Caraca and Carical Carical Carical Carical Carical Carical Carical Ca

SECURITY CLASSIFICATION OF THIS PAGE	والمستقول				
	REPORT DOCUM	ENTATION PAG	E		
18 REPORT SECURITY CLASSIFICATION		16. RESTRICTIVE M	ARKINGS		
UNCLASSIFIED					
20. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION/A			ibution
2b. DECLASSIFICATION/DOWNGRADING SCHE	DULE	Approved for unlimited.	public re	lease; distr	ibucion
4. PERFORMING ORGANIZATION REPORT NUM	IBER(S)	5. MONITORING OF	GANIZATION R	EPORT NUMBER(S	i)
Statistical TR No. 102		AFOSR-	TR- 84	1 15 3	}
6. NAME OF PERFORMING ORGANIZATION University of South	6b. OFFICE SYMBOL (If applicable)	7a. NAME OF MONI	TORING ORGAN	IZATION	
Carolina	(1) applicable)	Air Force Of	fice of Sc	ientific Res	earch
Sc. ADDRESS (City, State and ZIP Code)	<u> </u>	7b. ADDRESS (City,			
Department of Mathematics & S	tatistics	Directorate			rmation
Columbia SC 29208		Sciences. Bo	lling AFB	DC 20332-64	48
<u></u>					
8. NAME OF FUNDING/SPONSORING ORGANIZATION	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT	NSTRUMENT ID	ENTIFICATION N	JMBER
AFOSR	NM	AFOSR-84-015	6		
Bc. ADDRESS (City, State and ZIP Code)		10. SOURCE OF FU	NDING NOS.		
		PROGRAM	PROJECT	TASK	WORK UNIT
Bolling AFB DC 20332-6448		61102F	NO. 2304	NO.	NO.
<u> </u>		1		1	
SMALL-SAMPLE PROPERTIES OF KE	RNEL DENSITY ES	TIMATORS FROM	RANDOMLY R	IGHT-CENSORE	D DATA
12. PERSONAL AUTHOR(S) W.J. Padgett and D.T. McNicho	1s				
Technical FROM		14. DATE OF REPOR	RT (Yr., Mo., Day	15 PAGE C	OUNT
16. SUPPLEMENTARY NOTATION	to	25 001 04			
IS SOFFEENER I AN NOTATION					
17. COSATI CODES	18 SUBJECT TERMS (C	ontinue on reverse if no	cessary and ident	ily by black number	4
FIELD GROUP SUB. GR.	Random right-co				
	estimation; No	nparametric de	nsity esti	mation, band	IMIGEII
18 ARCTRACT (Continue or mucho)	<u> </u>				
19. ABSTRACT (Continue on reverse if necessary and The small-sample behavior of	two kernel-type	density estim	ators whic	h have been	proposed
in the literature for randoml	y right-censore	d samples is i	nvestigate	d via Monte	Carlo
simulations. The extensive s	imulation study	was performed	for five	families of	life
distributions, two different	censoring distr	ibutions, thre	e kernel t	unctions, an	d several
bandwidth sequences and for s reinforce previous theoretica	ample sizes iro	m n=20 to n-30 he estimators	and lead t	o conjecture	es about
their general behavior asympt	otically as wel	l as for small	samples.	A compariso	on of the
two density estimators is als	o indicated.		•	•	
	1				
20 DISTRIBUTION/AVAILABILITY OF ABSTRA	T	21 ABSTRACT SECU	RITY CLASSIFI	CATION	
UNCLASSIFIED/UNLIMITED $oldsymbol{\mathbb{Z}}$ SAME AS RPT.	C OTIC USERS	UNCLASSIFIED			
22. NAME OF RESPONSIBLE INDIVIDUAL		226 TELEPHONE NO		22c. OFFICE SYM	BOL
MAJ Brian W. Woodruff		(202) 767-	5027	NM	
00 508W 1472 82 ABB		,,,,,,,			

13 022 12 84

SMALL-SAMPLE PROPERTIES OF KERNEL DENSITY ESTIMATORS FROM RANDOMLY RIGHT-CENSORED DATA


by

W. J. Padgett
Department of Mathematics
and Statistics
University of South Carolina
Columbia, S. C. 29208

D. T. McNichols
Department of Statistics
Virginia Polytechnic Institute
and State University
Blacksburg, Virginia 24061

ABSTRACT

The small-sample behavior of two kernel-type density estimators which have been proposed in the literature for randomly right-censored samples is investigated via Monte Carlo simulations. The extensive simulation study was performed for five families of life distributions, two different censoring distributions, three kernel functions, and several bandwidth sequences and for sample sizes from n=20 to n=300. The simulation results reinforce previous theoretical results for the estimators and lead to conjectures about their general behavior asymptotically as well as for small samples. A comparison of the two density estimators is also indicated.

1. INTRODUCTION

Density estimation is a very important topic in applied, as well as theoretical, statistics. In particular, nonparametric procedures for estimating an unknown density are extremely useful in determining the characteristics of a statistical population being sampled and have direct applications in many inference problems. The modern methods of nonparametric density estimation have been developed since the early 1950's and lead to smooth estimates which are more suitable for inference than simple histogram estimates. Most of these estimators were based on complete samples, that is, random samples of size in from the unknown density. There have been several reviews written which give extensive bibliographies of results on nonparametric density estimation from complete samples. For example, see Wegman (1972 a,b), Fryer (1977), Tapia and Thompson (1978), Wertz and Schneider (1979), and Bean and Tsokos (1980).

Recently, density estimation from incomplete or censored samples has received a great deal of attention. Right-censored observations arise in many life testing situations and are very common in survival analysis (Lagakos, 1979). Such data occur often in medical trials when patients may enter treatment at different times and then either die from the disease, or cause, under investigation or leave the study before it is terminated (move away or die from another competing cause). Also, in industrial life testing, items may be removed from the study at various times for more extensive analysis or for other reasons. For such situations, it is of interest to obtain nonparametric estimates of the density function of the lifetime variable based on the right-censored data. The development of such density (or related function) estimates has only recently been considered, and a survey of known results was given by Padgett and McNichols (1984). The developments for censored data have followed the

same basic approaches as for the complete-sample case but generally present greater mathematical difficulties.

Kernel density estimators from randomly right-censored data have been studied by several authors. A kernel-type density estimator was proposed by Blum and Susarla (1980) and its asymptotic properties were studied. In particular, the asymptotic theory of the maximum deviation of their estimator was presented, extending the results of Rosenblatt (1976) to the case of random right-censorship. The strong consistency properties of the kernel estimator based on the productlimit estimate of the distribution function were studied by Földes, Rejtö and Winter (1981). McNichols and Padgett (1981) obtained very complicated finitesample expressions for the kernel density estimator and showed that it was asymptotically unbiased and that its variance approached zero as the sample size increased, assuming the Koziol and Green (1976) model of random censorship. Also, a modification of the kernel density estimator in which the bandwidth depended on the data was proposed by McNichols and Padgett (1984). However, only asymptotic properties were obtained in all of these results, except for those by McNichols and Padgett (1981) with respect to the Koziol-Green model which is somewhat restrictive in practice.

It is the purpose of this paper to study, by fairly extensive Monte
Carlo simulations, the finite-sample behavior of kernel density estimators
based on randomly right-censored data. The simulation study was performed since
it is very difficult, if not impossible, to obtain (even approximate) expressions
for the biases, mean-squared errors, variances, and sampling distributions of
such estimators for finite sample sizes under general nonrestrictive conditions.
Several different families of lifetime distributions, various types of censoring
distributions that are assumed in practice, various bandwidth sequences, and
three different kernel functions were used in the simulations. Since, for

linki dukun kiside id cidare in kiki kisini disiki kini aikan aikan ja kembuliki salan ka kan ka ka ta ta ta k

censored data, optimal bandwidth results analogous to those for complete samples is not available, some attention is given in the simulations to the behavior of the estimators with respect to the bandwidth.

Randomly right-censored data and the product-limit estimator will be discussed in Section 2. The kernel density estimators that are to be studied will be given in Section 3. The computer simulations will be described and a representative proportion of the simulation results will be given in Section 4. Finally, in Section 5 some conclusions concerning the small-sample behavior of the kernel estimators studied will be stated or conjectured.

RANDOMLY RIGHT-CENSORED SAMPLES

Let $X_1^0, X_2^0, \ldots, X_n^0$ denote the true survival times of n items or individuals which are censored on the right by a sequence U_1, U_2, \ldots, U_n which in general may be either constants or random variables. It is assumed that the X_1^0 's are nonnegative independent identically distributed random variables with common unknown distribution function F^0 . For the problem of density estimation, it is assumed that F^0 is absolutely continuous with density f^0 .

The observed right-censored data are denoted by the pairs (X_i, Δ_i) , $i=1,\ldots,n$, where

$$X_i = \min\{X_i^0, U_i^0\}, \quad \Delta_i = \begin{cases} 1 & \text{if } X_i^0 \leq U_i \\ 0 & \text{if } X_i^0 > U_i \end{cases}$$

Thus, it is known which observations are times of failure or death and which ones are censored or loss times. The nature of the censoring mechanism depends on the U_i 's: (i) If U_1, \ldots, U_n are fixed constants, the observations are time-truncated. If all U_i 's are equal to the same constant, then

the case of Type I censoring results. (ii) If all $U_i = X_{(r)}^0$, the <u>rth</u> order statistic of X_1^0, \ldots, X_n^0 , then the situation is that of simple Type II censoring. (iii) If U_1, \ldots, U_n constitute a random sample from a distribution H (which is usually unknown) and are independent of X_1^0, \ldots, X_n^0 , then (X_i, Δ_i) , $i=1,2,\ldots,n$, is called a randomly right-censored sample.

The random censorship model (iii) is assumed for the results presented here. It is attractive because of its mathematical convenience. Assuming this model, Δ_1,\ldots,Δ_n are independent Bernoulli random variables and the distribution function F of each X_i , $i=1,\ldots,n$, is given by $1\text{-F}=(1\text{-F}^0)(1\text{-H})$. Under the Koziol and Green (1976) model of random censorship, which is the proportional hazards assumption of Cox (1972), it is assumed that there is a positive constant β such that $1\text{-H}=(1\text{-F}^0)^\beta$. Then by a result of Chen, Hollander, and Langberg (1982), the pairs (X_i^0, V_i) , $i=1,\ldots,n$, follow the proportional hazards model if and only if (X_1,\ldots,X_n) and $(\Delta_1,\ldots,\Delta_n)$ are independent. This Koziol-Green model of random censorship arises in several situations (Efron, 1967; Csörgo and Horváth, 1981; Chen, Hollander and Langberg, 1982). Note that β is a censoring coefficient since $\alpha = P(X_i^0 \leq V_i) = (1+\beta)^{-1}$, which is the probability of an uncensored observation.

Based on the censored sample (X_i, Δ_i) , i=1,...,n, a popular estimator of the survival probability $S^O(t) = 1-F^O(t)$ at $t \ge 0$ is the product limit estimator, proposed by Kaplan and Meier (1958) as the "nonparametric maximum likelihood estimator" of S^O . This estimator was shown to be "self-consistent" by Efron (1967).

Let (Z_i, Δ_i') , i=1,...,n, denote the ordered X_i 's along with their corresponding Δ_i 's. A value of the censored sample will be denoted by the corresponding lower case letters (x_i, δ_i) or (z_i, δ_i') for the unordered on

ordered sample, respectively. The product-limit estimator of S^{O} is defined by (Efron, 1967)

$$\hat{P}_{n}(t) = \begin{cases} 1, & 0 \leq t \leq Z_{1} \\ \frac{k-1}{n} \left(\frac{n-i}{n-i+1}\right)^{\delta_{i}}, & (Z_{k-1}, Z_{k}], & k=2, ..., n. \\ 0, & t > Z_{n}. \end{cases}$$

Denote the product-limit estimator of $\hat{F}^{o}(t)$ by $\hat{F}_{n}(t) = 1 - \hat{P}_{n}(t)$, and let $\hat{P}_{n}(t) = \hat{P}_{n}(t)$ at $\hat{P}_{n}(t) = 1 - \hat{P}_{n}(t)$, and let $\hat{P}_{n}(t) = 1 - \hat{P}_{n}(t)$, and let

$$s_{j} = \begin{cases} \hat{1} - \hat{P}_{n}(Z_{2}), & j=1 \\ \hat{P}_{n}(Z_{j}) - \hat{P}_{n}(Z_{j+1}), & j=2,...,n-1 \\ \hat{P}_{n}(Z_{n}), & j=n. \end{cases}$$

Note that $s_j=0$ if and only if $\delta_j'=0$, j < n, that is, if Z_j is a censored observation.

The product-limit estimator has played a central role in the analysis of censored survival data (Miller, 1981), and its properties have been studied extensively by many authors, for example, Breslow and Crowley (1974), Földes, Rejtö and Winter (1980), and Wellner (1982).

3. THE KERNEL DENSITY ESTIMATORS

Since the work of Rosenblatt (1956) and Parzen (1962), kernel density estimators have been perhaps the most popular density estimators used in practice and have been studied extensively regarding their theoretical properties. Also, various modifications with respect to the bandwidth sequence and kernel have been proposed. Until recently, all of the results were for complete samples (see Fryer, 1977, or Bean and Tsokos, 1980). For randomly

right-censored data, the first results for kernel density estimatic. In I not appear until 1980.

Blum and Susarla (1980) generalized the complete-sample results of Rosenblatt (1976) concerning maximum deviation of density estimates by the kernel method. They obtained limit theorems for the maximum over a finite interval of a normalized deviation of the density estimate when the observations were censored on the right. The results were useful for goodness-of fit tests and tests of hypothesis about the unknown lifetime density f^0 . To define the Blum-Susarla estimator based on the randomly censored observations (X_i, Δ_i) , $i=1, \ldots, n$, let $\{h=h(n)\}$ be a positive sequence converging to zero as $n \to \infty$ and let

$$N^+(x)$$
 = number of X_i 's > x.

Define

$$H_n^{*}(x) = \prod_{j=1}^{n} \left\{ \frac{1+N^{+}(X_j)}{2+N^{+}(X_j)} \right\}^{I} [\delta_j=0, X_j \leq x]$$

where $I_{\{A\}}$ denotes the indicator function of the measurable set A. By a modification of the product-limit estimator, it can be shown that B_n^* is a good estimate of the survival function for the censoring distribution, $B_n^* = 1$ -H (Blum and Susarla, 1980). For a kernel function K satisfying certain conditions, the Blum-Susarla estimator is defined by

$$f_n^*(x) = \frac{1}{nh} \cdot \frac{\sum_{j=1}^{n} K(\frac{x-X_j}{h})}{H_n^*(x)}$$
 (3.1)

By following standard arguments, $(f^OH^*)_n(x) = (nh)^{-1} \sum_{j=1}^n K((x-X_j)/h) I_{\{\delta_j=1\}}$ and $H^*_n(x)$ can be shown to be good estimators: of $f^O(x)H^*(x)$ and $H^*(x)$, respectively. This motivates the use of (3.1) as an estimator of $f^O(x)$.

The main results of Blum and Susarla (1980) concern the asymptotic distribution of

$$M_{n} = (nh)^{\frac{1}{2}} \sup_{0 \le x \le 1} \frac{|f_{n}^{*}(x) - [hH^{*}(x)]^{-1}E[K(\frac{x-X_{1}}{h})I_{\delta_{1}=1}]|}{[f^{o}(x)/H^{*}(x)]^{\frac{1}{2}}}$$

under various conditions on fo, K, and H.

Földes, Rejtö and Winter (1981) obtained strong convergence results for the kernel density estimator

$$\hat{f}_{n}(x) = h^{-1} \int_{-\infty}^{\infty} K(\frac{x-t}{h}) d\hat{f}_{n}(t), \qquad (3.2)$$

which reduces to the usual Parzen (1962) density estimator in the case of no censoring (since the product-limit estimator \hat{F}_n reduces to the usual empirical distribution function). Their results were obtained under various conditions on H, F^o, f^o, and K, and they assumed that the bandwidth sequence $\{h(n)\}$ was such that $h(n) \to 0$ but $h(n)(n/\log(n))^{1/8} \to \infty$ as $n \to \infty$.

McNichols and Padgett (1981) wrote (3.2) as

$$\hat{f}_{n}(x) = h^{-1} \sum_{j=1}^{n} s_{j} K(\frac{x-2_{j}}{h}),$$
 (3.3)

where Z_j is the <u>jth</u> ordered observation and s_j denotes the jump of \widehat{F}_n at Z_j . They considered the mean, variance, and mean-squared error of (3.3) under the Koziol-Green model. Expressions for the mean and variance of (3.3) at each $x \ge 0$ were obtained and asymptotic unbiasedness and mean-square convergence was shown with K and $\{h(n)\}$ satisfying the usual Parzen (1962) conditions. Note that the sums in both (3.1) and (3.3) only explicitly include the terms with uncensored observations although the censoring is treated somewhat differently.

The small-sample properties of (3.1) and (3.3) have not been studied previously, either analytically or by computer simulations, other than under the restrictions of the Koziol-Green model (McNichols and Padgett, 1981). In the next section, a rather extensive Monte Carlo simulation study of the estimators (3.1) and (3.3) for small sample sizes will be described, and some representative results will be presented.

It should be mentioned that a modification of f_n in which the bandwidth h is data-driven has been given by McNichols and Padgett (1984). It was shown that if $h = h(X_1, ..., X_n)$ is a "nearest neighbor" type function, then the conditions for consistency of the modified estimator hold. Also, it should be remarked that the data-based algorithms for choosing h in the complete sample case discussed by Scott and Factor (1981) do not seem to be fruitful for the case of censored samples. In particular, an expression similar to their (2.4) (see also Parzen, 1962), and hence (2.10), is not available in the censored data case and seems to be extremely difficult to obtain (McNichols and Padgett, 1981). A likelihood approach corresponding to their expression (2.8) does not seem to be feasible either, since for censored data, the survival function corresponding to f_n appears in the likelihood function. Hence, in the simulation study described in the next section, some attention is given to estimating the mean squared errors of the kernel estimators as a function of various bandwidth values. This gives an indication of the range of values of h which tend to minimize mean squared errors of both (3.1) and (3.3) in the cases simulated.

4. THE MONTE CARLO SIMULATIONS

Simulations were performed for randomly right-censored samples generated from five different families of life distributions commonly used in the

literature: exponential with mean β , denoted $E(\beta)$, gamma with parameters α and β , denoted $G(\alpha,\beta)$, Weibull with density $f(x;\alpha,\beta) = \frac{\alpha}{\beta}(\frac{x}{\beta})^{\alpha-1} \exp[-(x/\beta)^{\alpha}] , x>0, \text{ denoted } W(\alpha,\beta), \text{ lognormal with mean } \exp(\alpha+\frac{1}{2}\beta^2), \text{ denoted } L(\alpha,\beta), \text{ and inverse Gaussian with density } f(x;\mu,\lambda) = \left[\lambda/(2\pi x^3)\right]^{\frac{1}{2}} \exp[-\lambda(x-\mu)^2/(2\mu^2 x)], x>0, \text{ denoted } IG(\mu,\lambda).$ Two different types of censoring distributions were utilized, exponential with mean one and uniform on $(0,t_q)$, where t_q denotes the q^{th} percentile of the life distribution, 0 < q < 100. Three different kernel functions K were used, the standard normal density, the uniform density on $\{-1,1\}$, and the triangular density on $\{-1,1\}$,

$$K(x) = \begin{cases} 1 - |x|, & |x| \leq 1 \\ 0, & \text{otherwise.} \end{cases}$$

In addition, several bandwidth values h = h(n) were used in the study, including $h(n) = n^{-p}$ for various values of p.

The simulations represented in Tables 4.1-4.7 and 4.12-4.15 were based on 1,000 randomly right-censored samples each of size $\,$ n for each choice of life distribution, censoring distribution, kernel function, and bandwidth value for $\,$ n = 20, 50, 100, and 300. For each sample, the estimates (3.1) and (3.3) were computed for values of $\,$ t = 5th, 10th, 20th,...,90th, and 95th percentiles of the censoring distribution (t values of 5th, 50th, and 95th percentiles only are reported in these tables). At each $\,$ t, the bias, mean squared error (MSE), and variance of the estimators were estimated from the 1,000 computed values. Also, the standard error of the estimate of MSE at each $\,$ t was computed for each estimator. The standard errors were bounded by $\,$ 10⁻².

The computer programs for the simulations were written in Fortran on an Amdahl 470 V611 computer. The random number generators contained in the

ومداعية بعدا مدامين يداري أردائه ويدائب وتدائدا أمراها والمداعة الدائمة والمعارض فياري أمراهم أمراها

International Mathematical and Statistical Libraries (1980)(IMSL) package were used in the generation of the required samples. Uniform random numbers were generated from the IMSL subroutine GGUBS. IMSL subroutine GGEXN was used for the exponential random numbers, GGAMR for gamma, GGWIB for Weibull, and GGNLG for lognormal random numbers. To generate a value x from the inverse Gaussian distribution, the procedure given by Michael, Schucany, and Haas (1976) was used.

The Monte Carlo simulations were performed in the following manner: A random sample X_1^0,\dots,X_n^o was generated from the life distribution, and a random sample U_1,\dots,U_n was generated from the censoring distribution. Next, the randomly right-censored sample (X_i,Δ_i) , $i=1,\dots,n$, was obtained by $X_i=\min\{X_i^0,U_i\}$, $\Delta_i=1$ if $X_i=X_i^0$ and $\Delta_i=0$ if $X_i=U_i$. The values X_1,\dots,X_n were ordered to yield (Z_i,Δ_i^i) , $i=1,\dots,n$, and the product-limit estimator was computed along with the jump size s_i at each Z_i . The estimators $f_n^*(t)$ and $\hat{f}_n(t)$ given by (3.1) and (3.3) were computed at the appropriate values of t. This entire procedure was repeated for 1,000 randomly right-censored samples. The average biases, mean squared errors, and variances as well as the standard errors (all were bounded by 10^{-2}) of the estimated mean squared errors were computed for $f_n^*(t)$ and $\hat{f}_n(t)$ over the 1,000 samples. The entire procedure was repeated for each sample size, life distribution, censoring distribution, kernel function, and bandwidth value mentioned before.

Some representative simulation results for $f_n(t)$ are given in Tables 4.1 - 4.7. All of the results cannot be listed due to space limitations. All entries in all tables are to be multiplied by 10^{-4} .

In the hope of gaining some insight into the behavior of f_n^* and f_n with respect to the bandwidth values h, several cases were simulated, using 200

samples each (instead of 1000, due to computer time constraints), in which the estimated MSE was obtained as a function of h. The estimated MSE was obtained for f_n^* and \hat{f}_n at values h=.05,(.05),.55. For sample size n=50 and 100 some representative results are shown in Tables 4.8-4.11. Note that the range of h values contains $n^{-1/2}$, $n^{-1/3}$, and $n^{-1/5}$ within the boundaries for these sample sizes. The results indicate that f_n^* and \hat{f}_n tend to behave similarly with respect to MSE. Therefore, in order to indicate a comparison of the behavior of f_n^* and \hat{f}_n as density estimators when the same bandwidth values are used, some representative simulation results are listed in Tables 4.12-4.15. In these tables $a=P(an uncensored observation)=P(X_i^0 \leq U_i)$.

5. CONCLUSIONS

Several conclusions concerning the small-sample behavior of the kernel density estimators \hat{f}_n and \hat{f}_n^* can be stated based on the extensive simulations described in Section 4. In particular, the simulation results indicate the following for \hat{f}_n : The estimated variances of $\hat{f}_n(t)$ increase as the bandwidth sequence $\{h(n)\}$ varies from $n^{-1/5}$ to $n^{-1/2}$. For $h(n) = n^{-1/5}$, the variances of $\hat{f}_n(t)$ decrease as n increases, but probably do not converge to zero uniformly in t. For small values of t, the bias of $\hat{f}_n(t)$ is larger in magnitude than the biases for moderate to large values of t. Overall, with respect to the criterion of mean squared error, for both \hat{f}_n^* and \hat{f}_n with moderate to large t, $h(n) = n^{-1/5}$ appears to be the best choice for the bandwidth among the values $h(n) = n^{-p}$, p = 1/2, 1/3, 1/5, whereas for small t, $n^{-1/2}$ or $n^{-1/3}$ appears better with respect to mean squared error (Tables 4.1-4.7). This is supported by the representative results in Tables 4.8-4.11. Of the three kernel functions studied, the

Density Estimate \hat{f} . Table 4.1

E(1). Life Distribution: E(1), Censoring Distribution: (All entries are to be multiplied by 1.0E-04.)

	Bias Var. $\hat{f}_n(t)$ MSE. $\hat{f}_n(t)$	156					- 2501 361 986	- 4635 22 2171	65		262	250 515 520	296		173	- 13 456 455	37	76	13 261 261		76	- 283 145 153		131	- 77 295 295	67 97 06		
lar Kernel	$r.\hat{f}_n(t)$ MSE. $\hat{f}_n(t)$			984 1914	87 1809		608 759	37 1450	110 592			731 734			260 260			129 129		71 78		106 118		193 193		69 89	166 166	
Triangular	Bfas Va	0097 -	- 3979	- 3051	- 4149	- 3041	- 1227	- 3759	- 2195	- 37	273	190	160	25	- 31	- 76	25	16	- 13	- 265	- 291	- 348	- 42	97 -	- 39	88	66	0
Ker	$\hat{f}_n(t)$ MSE. $\hat{f}_n(t)$			268 2351		58 2132	192 1220	10 2636	32 1584		86 88	-			81 82	232 232	14 14	97 97			46 24	ļ		69 69		19 20	60 61	
Standard N	Bias Var.f	- 5852	- 5286	- 4564	- 5457	- 4553	- 3206	- 5125	- 3940	- 1899	382	172	263	- 93	77	- 20	98	39	16	- 117	- 214	- 267	57	- 22	- 48	102	06	00
d		1/5	1/3	1/2	1/5	1/3	1/2	1/5	1/3	1/2	1/5	1/3	1/2	1/5	1/3	1/2	1/5	1/3	1/2	1/5	1/3	1/2	1/5	1/3	1/2	1/5	1/3	2
f ⁰ (t) n	(t)	9500 20	(513)		100	-		300			5000 20	(6931)		100	·· =		300			500 20	(29957)		100			300	_	

Table 4.2 Density Estimate f.

 $U(0, t_{90}), t_{90}^{=} 2.3026.$ Life Distribution: E(1), Censoring Distribution: (All entries are to be multiplied by 1.0E-04.)

(
f (t)	c	۵.	Standard	Norma.	Kernel	Triangular		, i	Uniform Kernel		~
(5)			Blas Var	n (c)	E.I (T)	bias va		(t) MSE.I _n (t)	Bias Va	_	MSE.f _n (t)
8913	20	1/5	- 5076	53	5629	- 3338	249	1364	- 4456	128	2114
(1151)		1/3	- 4316	112	1975	- 2373	9/4	1039	- 36/8	231	1584
		1/2	- 3227	271	1313	- 1021	987	1001	- 2361	582	1139
	100	1/5	- 4500	18	2043	- 2639	80	777	- 3849	42	1524
		1/3	- 3191	55	1073	- 1052	202	313	- 2355	109	663
		1/2	- 1233	181	333	24	532	532	82	397	397
	300	1/5	- 4057	6	1656	- 2092	40	478	- 3385	21	1167
		1/3	- 2284	35	557	- 223	115	119	- 1107	20	192
		1/2	- 197	130	134	43	347	347	54	546	546
3162	20	1/5	573	77	77	197	283	286	398	204	219
(11513)		1/3	427	128	146	55	667	667	207	358	362
		1/2	177	299	302	- 38	922	922	24	069	069
	100	1/5	295	22	31	89	79	80	103	54	55
		1/3	76	57	58	54	172	172	54	121	121
		1/2	53	154	154	21	399	399	58	290	290
	300	1/5	153	6	11	e	32	32	28	77	24
		1/3	12	28	28	- 26	83	83	- 24	28	58
		1/2	- 27	92	92	- 32	242	242	- 30	180	180
1122	20	1/5	465	99	98	632	374	414	607	176	193
(21874)		1/3	501	156	181	821	729	962	593	375	605
		1/2	629	904	677	1106	1515	1636	826	877	776
	100	1/5	74	27	82	1703	206	967	976	61	151
		1/3	1380	123	313	2714	739	1475	1874	295	979
		1/2	2600	979	1322	3423	2786	3955	3447	1698	2884
	300	1/5	975	12	107	2235	92	575	1971	25	238
		1/3	2134	63	519	3472	453	1659	3197	155	1177
	_	1/2	3316	299	1766	2604	3461	4136	2816	2485	3277
									_		

Table 4.3 Density Estimate $\hat{\mathbf{f}}$.

Life Distribution: G(2,1), Censoring Distribution: E(1). (All entries are to be multiplied by 1.0E-04.)

0					+						
	<u> </u>	۵.	Star	arc	ernel	Ţ	Triangular l	Kernel	Unifo	rm Kernal	<
(E)			Bias	s Var.f (t) MSE.f (t	E. f (t)	<u>a</u>	las Var.f	n (t) MSE.f (t)	Bias	Bias Var.f (t)	MSE.f (t)
487	20	1/5	805		101	41			639	89	109
(513)		1/3	624	4 42	81	26	263	63 70	438	75	76
		1/2	40]		89	12			229	87	95
	100	1/5	650		50	28	280		455	14	35
		1/3	374	4 1.0	54	10		18 19	207	18	23
		1/2	12.		18	ı			19	27	27
	300	1/5	54.		33	198			356	5	18
		1/3	232	2 5	10	7.4	28		95	7	∞
		1/2	16		6	- 2		20 20	- 22	15	15
3466	20	1/5	- 648	8 125	167	- 23			- 385	280	295
(6931)	_	1/3	- 437		227	- 13				707	410
		1/2	- 228		385	ı	58 1005	05 1005	- 41	184	184
	100	1/5	- 501		56	7			- 217	99	70
		1/3	- 181	1 67	71		37 18	184 184	- 62	131	131
		1/2	- 46		165	_ 2			4	322	322
	300	1/5	- 339		25	ı		41 42	- 123	28	29
		1/3	- 84	4 37	37	_ _	18	95 95		89	89
		1/2	- 19		105	7		252 252	- 14	193	193
1498	20	1/5	30		187	- 14		979 779	- 99	465	465
(29957)		1/3	- 81	1 362	363	- 202	1010			720	724
		1/2	- 148		089	- 20		51 1653	- 204	1313	1316
	100	1/5	451	1 129	149	512			481	356	379
		1/3	497		432	56	51 1382		517	906	930
_		1/2	244		1259	63		76 3614	2303	2327	242
	300	1/5	23.		79	25			239	163	168
		1/3	252	2 228	235	322	22 742		259	462	768
		1/2	32.		831	38		19 2332	360	1488	1499

Table 4.4 Density Estimate f..

$U(0, t_{90}), t_{90}$ 3.8897.	
Censoring Distribution:	
G(2,1), be multip	
Life Distribution: G(2,1), Censoring Distri (All entries are to be multiplied by 1.0E-04.)	

1, (1) 1, (2) 1, (3) 1, (4) 1	0.		Г									
1/3 20 34 34 - 84 90 91 - 129 72 72 73 73 74 74 75 75 75 75 75 75	99		۵.	Standar Bias Va	d Normal	Kernel SF.f (+)	Trian	ıgular Kern Vər ⋛ (+)	nel McF ? (+)	Uni	form Kernel	Men &
20 1/5 20 34 34 - 84 90 91 - 29 72 1/3 - 81 55 55 - 99 135 136 - 110 104 1/3 - 16 99 9 - 65 27 - 90 18 100 1/3 - 16 9 9 - 40 53 26 18 16 19 104 18 18 18 19 19 - 40 53 26 27 - 90 18 88 88 10 11 - 18 18 48 - 40 - 40 - 40 - 40 - 40 - 40 - 40 - 40 - 40 - 40 - 40 - 40 - 40 - 40 - 40				Dras va	u (a) u	ח מישפו	DIGS	var.ın(t)	moE.I (C)	D18	s var.i (t)	MSE. I
1/3 - 31 55 55 - 99 135 136 - 110 104 100 1/2 - 86 93 93 - 57 232 215 - 115 169 100 1/5 - 16 99 9 - 85 26 27 - 90 31 300 1/2 - 46 48 - 98 10 - 90 31 1/2 - 59 9 10 - 96 10 - 98 88 88 1/2 - 51 28 10 11 - 12 90 31 1/2 - 51 28 28 64 64 - 19 49 - 98 88 89 - 10 10 - 10 10 - 10 10 10 10	1091		1/5	20	34	34		90	91	1		72
112 - 86 93 93 - 57 232 211 169 100 1/5 - 16 9 9 - 85 26 27 - 92 18 100 1/2 - 47 48 4 - 40 - 40 - 90 37 300 1/2 - 53 4 4 - - 40 - 98 10 - 88 88 300 1/3 - 96 9 10 - 17 - 17 - 17 - 17 - 17 - 17 - 18 88 88 88 88 88 18 - 17 17 17 - 17 17 17 17 17 17 17 17 17 18 18 88 88 88 18 - 10 <th>(1944)</th> <td></td> <td>1/3</td> <td></td> <td>55</td> <td>55</td> <td>66 -</td> <td>135</td> <td>136</td> <td></td> <td></td> <td>104</td>	(1944)		1/3		55	55	66 -	135	136			104
100 1/5 - 16 9 9 - 85 26 27 - 92 18 11/3 - 76 19 20 - 40 53 53 - 90 37 300 1/2 - 47 48 48 - 40 53 - 90 37 300 1/3 - 53 4 4 - 98 10 - 13 25 64 7 1/2 - 31 28 28 - 28 64 64 7 18 18 18 18 20 1/2 - 31 28 28 64 64 18 18 67 509 509 509 67 18 18 18 61 18 18 61 18 18 82 18 18 82 18 18 82 18 18 82 18 18 18 18 18 18 18 18 18 18 18			1/2		93	93		232	232	. 1		170
1/3 - 76 19 20 - 40 53 53 - 90 37 300 1/2 - 43 4 - 98 10 11 - 124 7 1/2 - 53 4 4 - 98 10 11 - 124 17 1/2 - 31 28 22 25 25 25 26 18 48 20 1/2 - 31 28 64 64 - 18 49 18 1/2 - 31 28 28 67 509 509 65 355 355 156 198 198 118 61 40 198 118 624 118 624 118 624 118 624 114 118 118 118 118 118 118 118 118 118 118 118	-	100	1/5		6	6	- 85	26	27			19
300 1/5 - 53 4 48 - 13 119 119 - 8 88 300 1/5 - 53 4 4 - 98 10 11 - 124 7 1/3 - 96 9 10 - 32 25 - 64 18 7 1/3 - 96 9 10 - 32 25 - 64 18 49 1/3 - 31 28 - 28 64 55 309 309 26 18 1/2 - 55 324 35 309 309 65 355 100 1/5 55 324 36 309 65 355 101 1/2 42 136 75 309 86 52 22 42 153 367 367 367 367 367 367 367 367 367 367 367 367 367 367 367 368 36 <th></th> <td></td> <td>1/3</td> <td></td> <td>19</td> <td>20</td> <td>07 -</td> <td>53</td> <td>53</td> <td></td> <td></td> <td>37</td>			1/3		19	20	07 -	53	53			37
300 1/5 - 53 4 4 - 98 10 11 - 124 7 1/2 - 96 9 10 - 32 25 25 - 64 18 20 1/3 - 13 28 15 64 75 18 - 64 18 10 1/3 59 154 155 67 509 509 65 355 355 10 1/2 55 154 155 67 509 908 15 654 49 18 61 41 509 65 355			1/2		87	48		119	119			88
1/3 - 96 9 10 - 32 25 25 64 18 49 1/2 - 31 28 10 - 28 64 64 19 49 1/3 59 154 155 67 509 509 65 355 1/1 55 324 324 76 908 908 15 624 100 1/5 55 324 324 76 908 908 15 624 100 1/5 42 138 138 13 36 114 26 365 114 26 365 114 26 136 114 26 136 114 14 26 136 114 26 136 114 156 136 114 14 14 14 14 14 14 14 14 14 14 14 14 14 14		300	1/5		7	7		10	11			6
1/2 - 31 28 2 64 64 - 19 49 20 1/5 64 75 75 55 309 309 66 158 1/3 59 154 155 67 509 509 65 355 1/2 55 324 324 324 155 67 509 509 65 355 100 1/5 55 324 324 36 15 624 15 624 355 62 355 62 355 16 17 33 35 114 26 153 153 114 26 153 114 26 114 36 114 36 114 47 267 36 114 47 267 36 114 47 267 313 213 213 213 213 213 213 213 213 213 213 213			1/3		6	10		25	25			18
20 1/5 64 75 75 55 309 309 26 198 1/2 59 154 155 67 509 509 65 355 1/2 55 324 324 324 76 908 908 15 624 100 1/5 324 324 324 324 75 75 624 355 355 624 15 624 15 624 15 624 15 624 15 624 15 624 15 624 15 624 15 624 15 624 15 624 15 624 15 624 15 624 114 36 114 36 15 16 114 36 114 36 114 36 114 36 114 36 114 41 41 41 41 41 41 41 41 41 41 <			1/2	- }	28	28		99	99			67
1/3 59 154 155 67 509 509 65 355 100 1/2 55 324 324 324 76 908 908 15 624 100 1/5 32 22 22 22 36 75 75 33 35 114 624 153 153 36 114 26 117 36 17 36 114 26 117 36 114 26 117 36 114 26 117 36 114 26 114 26 114 36 114 26 114 36 114 26 114 36 114 26 114 36 114 26 114 36 114 26 114 31 31 21 114 26 114 31 31 31 31 31 31 31 31 31 31 31 31 31	2781		1/5	99	75	75	55	309	309	2		198
1/2 55 324 324 76 908 908 15 624 100 1/5 5 22 22 36 75 75 33 52 1/3 31 55 55 42 153 153 36 114 300 1/2 42 138 138 61 367 367 37 36 114 267 300 1/5 41 29 29 41 33 32 23 23 23 114 267 36 114 36 114 36 88 88 - 30 213 213 213 23 <	(19448)		1/3	59	154	155	29	509	209	9		355
100 1/5 5 22 22 36 75 75 33 52 1/3 42 153 153 153 367 114 1/2 42 153 153 154 114 300 1/5 15 10 10 41 33 33 32 23 1/3 41 29 29 36 88 88 - 30 47 56 1/2 30 88 88 - 30 213 213 47 56 1/2 30 88 88 - 30 213 213 47 56 1/2 1/2 20 29 455 404 424 312 213 1/2 481 436 459 736 1402 657 896 1/2 481 436 459 736 7497 2930 2148 1733 2 1/3 <			1/2	55	324	324	9/	806	806	1		624
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		100	1/5	5	22	22	36	75	75	3		52
1/2 42 138 138 61 367 367 71 267 300 1/5 15 10 10 41 33 33 32 23 1/3 41 29 29 36 88 - 30 213 - 17 158 20 1/2 30 87 97 455 404 424 312 213 1/3 360 189 202 592 723 757 404 403 1/2 481 436 459 736 1349 1402 657 896 100 1/5 741 38 93 1557 239 481 1262 76 1/3 1324 150 325 2069 759 1186 1733 2 1/2 1993 668 1064 2087 2497 2930 2148 1733 1/3 173 <td< td=""><th></th><td></td><td>1/3</td><td>31</td><td>55</td><td>55</td><td>42</td><td>153</td><td>153</td><td>3</td><td></td><td>114</td></td<>			1/3	31	55	55	42	153	153	3		114
300 1/5 15 10 10 41 33 33 32 23 1/3 41 29 29 29 36 81 81 47 56 1/2 30 88 88 - 30 213 - 17 158 20 1/5 309 87 97 455 404 424 312 213 1/3 360 189 202 592 723 757 404 403 1/2 481 436 459 736 1349 1402 657 896 100 1/5 741 38 93 1557 239 481 1262 76 1/3 1324 150 325 2069 759 1186 1902 381 1/2 1993 668 1064 2087 2497 2930 2148 1736 1/5 971 17 1			1/2	42	138	138	61	367	367	7		268
10 1/5 41 29 29 36 81 81 47 56 1/2 30 88 88 - 30 213 - 17 158 20 1/5 309 87 97 455 404 424 312 213 1/3 143 459 736 1349 1402 657 896 100 1/5 741 38 93 1557 239 481 1262 76 1/3 1324 150 325 2069 759 1186 1902 381 1/2 1993 668 1064 2087 2497 2930 2148 1733 2 300 1/5 971 17 111 1884 99 454 464 464 403 1/3 1795 87 409 454 1404 38 1/3 172 1667 752		300	1/5	15	10	10	41	33	33	3		23
20 1/5 309 87 455 404 424 312 213 1/3 360 189 202 592 723 757 404 403 1/2 481 436 459 736 1349 1402 657 896 100 1/5 741 38 93 1557 239 481 1262 76 1/3 1324 150 325 2069 759 1186 1902 381 1/2 1993 668 1064 2087 2497 2930 2148 1733 2 300 1/5 971 17 111 1884 99 454 1404 38 1/3 1/3 409 1722 658 954 2110 472 1/2 1667 752 1029 1295 2205 2371 1351 1724			1/3	41	29	29	36	81	81	7		26
20 1/5 309 87 97 455 404 424 312 213 1/3 360 189 202 592 723 757 404 403 1/2 481 436 459 736 1349 1402 657 896 100 1/5 741 38 93 1557 239 481 1262 76 1/3 1324 150 325 2069 759 1186 1902 381 1/2 1993 668 1064 2087 2497 2930 2148 1773 300 1/5 971 17 111 1884 99 454 1404 38 1/3 1/3 409 1722 658 954 2110 472 1/2 1/2 752 1029 1295 2205 2371 1351 1724			1/2	30	88	88	Į	213	213			158
1/3 360 189 202 592 723 757 404 403 1/2 481 436 459 736 1349 1402 657 896 100 1/5 741 38 93 1557 239 481 1262 76 1/3 1324 150 325 2069 759 1186 1902 381 1/2 1993 668 1064 2087 2497 2930 2148 1733 300 1/5 971 17 111 1884 99 454 1404 38 1/3 1795 87 409 1722 658 954 2110 472 1/2 1667 752 1029 2205 2205 2371 1351 1724	917		1/5	309	87	26	455	707	474	31		222
1/2 481 436 459 736 1349 1402 657 896 1/5 741 38 93 1557 239 481 1262 76 1/3 1324 150 325 2069 759 1186 1902 381 1/2 1993 668 1064 2087 2497 2930 2148 1733 1/5 971 17 111 1884 99 454 1404 38 1/3 1795 87 409 1722 658 954 2110 472 1/2 1667 752 1029 1295 2205 2371 1351 1724	(36952)	·	1/3	360	189	202	592	723	757	40		418
1/5 741 38 93 1557 239 481 1262 76 1/3 1324 150 325 2069 759 1186 1902 381 1/2 1993 668 1064 2087 2497 2930 2148 1733 1/5 971 17 111 1884 99 454 1404 38 1/3 1795 87 409 1722 658 954 2110 472 1/2 1667 752 1029 1295 2205 2371 1351 1724			1/2	481	436	459	736	1349	1402	65		939
1/3 1324 150 325 2069 759 1186 1902 381 1/2 1993 668 1064 2087 2497 2930 2148 1733 1/5 971 17 111 1884 99 454 1404 38 1/3 1795 87 409 1722 658 954 2110 472 1/2 1667 752 1029 1295 2205 2371 1351 1724		100	1/5	741	38	93	1557	239	481	126		235
1/2 1993 668 1064 2087 2497 2930 2148 1733 1/5 971 17 111 1884 99 454 1404 38 1/3 1795 87 409 1722 658 954 2110 472 1/2 1667 752 1029 1295 2205 2371 1351 1724			1/3	1324	150	325	2069	759	1186	190		742
1/5 971 17 111 1884 99 454 1404 38 1/3 1795 87 409 1722 658 954 2110 472 1/2 1667 752 1029 1295 2205 2371 1351 1724			1/2	1993	899	1064	2087	2497	2930	214		2193
1795 87 409 1722 658 954 2110 472 1667 752 1029 1295 2205 2371 1351 1724		300	1/5	971	17	111	1884	66	454	140		235
1667 752 1029 1295 2205 2371 1351 1724		_	1/3	1795	87	604	1722	658	954	211		917
			1/2	1667	752	1029	1295	2205	2371	135		1905

Table 4.5 Density Estimate \hat{f} .

Life Distribution: IG(3,1), Censoring Distribution: E(1). (All entries are to be multiplied by 1.0E-04.)

(
f"(t)	c	ď	Standard Bias Var	d Normal Kernel r.Î _n (t) MSE.Î _n (t	ernel E.f (t)	Triangular Bias Var.f	ular Kernel ar.f (t) MS	Kernel (t) MSE. $\hat{\mathbf{f}}_{\mathbf{n}}(t)$	Uniform Bias Var	Kernel $\hat{f}_n(t)$	MSE.Î (t)
28	20	1/5	2240	61	563	2102	121	563	2433	133	724
(513)		1/3	2275	87	604	1724	138	435	2345	182	732
		1/2	2049	119	539	1105	139	261	1694	236	523
	100	1/5	2251	14	521	1781	24	342	2304	32	563
		1/3	1986	21	416	1056	25	137	1650	77	316
		1/2	1155	24	157	357	18	30	663	39	83
	300	1/5	2216	9	497	1537	6	245	2126	12	464
		1/3	1628	œ	273	673	80	53	1139	15	145
		1/2	598	7	43	138	5	7	269	10	18
4513	20	1/5	- 873	141	217	101	428	428	97	319	319
(6931)		1/3	- 301	243	252	25	689	689	174	206	208
		1/2	34	443	443	15	1280	1278	- 118	855	855
	100	1/5	- 557	34	65	55	115	115	77	74	74
		1/3	&	82	82	25	248	248	42	181	181
		1/2	28	222	221	36	558	558	_ 7	417	416
	300	1/5	- 239	16	22	99	52	52	107	36	37
		1/3	65	97	97	53	126	126		89	88
		1/2	37	138	138	103	343	343	51	255	255
769	70	1/5	426	159	177	339	491	502	407	384	400
(10662)		1/2	383 329	90S 887	302 517	275	724	730	361	626 987	639
	100	_	699	134	179	714	887	538	712	330	380
		6/1	300 300	352	707	F () F .	1026	3073	720	74.	2.90
-			7	918	63 69 69	n D D	2456	13	f : cer vj.	1744	1789
	300	(0.)	Ο\ ; (Φ) : •	in vo	(Q) (O)	73.7	172	273	151	127	129
-		٠, ١	525 525	r /) 	727	103	423	424	108	767	294
		_	4 C	452	69 5	184	1546	1548	108	759	759

Table 4.6 Density Estimate f.

Life Distribution: W(0.5,1), Censoring Distribution: E(1). (All entries are to be multiplied by 1.0E-04.)

					o service of	•					
f ^o (t)	u	Ф	Standard Bias Var	Normal Kernel f (t) MSE.f (t	Kernel Æ.f _(t)	Trian Bias	lgular Keri Var.f (t)	Triangular Kernel Bias Var.f (t) MSE.f (t)	Uniform Blas Va	Uniform Kernel Bias Var.f (t)	MSE.Î _n (t)
17603	20	1/5		76	18287	- 10182	349	10717	- 12644	147	16134
(ctc)		1/3		153	15046		1	7073	- 11048	296	12504
•		7/1	- 10004	3/6	10383	- 4470	1631	3628	- 8399	727	7781
	100	1/5	- 12548	23	15770	- 8500		7342	- 11455	47	13171
		1/3		75	9819	- 4210	334	2106	- 8226	142	0169
•		1/2	- 4714	299	2521	2313		1579	- 1426	575	778
	300	1/5	- 11704	12	13710	- 7108		5111	- 10461	23	10966
		1/3	- 7685	67	5956	- 1078	203	319	- 5488	93	3106
+		1/2	50	240	240	3631		1999	6905	533	5302
2612	70	1/5	1124	88	215	400		313	812	248	313
(6931)		1/3	1045	160	569	185	697	473	373	371	384
<u>.</u>		1/2	433	305	324	79		803	114	612	612
	100	1/5	879	22	100	85		73	243	54	09
-		1/3	243	53	29	- 21	142	142	S	105	105
		1/2	8 -	128	128	- 43		327	- 47	247	247
	300	1/5	269	10	59	58		33	157	24	26
		1/3	88	29	30	- 25	72	72	2	56	26
		1/2	- 28	80	80	- 39		190	- 39	147	147
512	70	1/5	225	83	88	204		267	197	186	190
(16667)		1/3	203	147	151	226	429	434	167	279	281
		1/2	506	275	279	263		783	245	536	542
	100	1/5	529	11	105	602	ł	337	574	191	224
		1/3	585	211	245	940		721	581	077	727
		1/7	630	604	643	206		1806	999	1163	1206
	300	1/5	268	53	09	245		165	764	116	121
		1/3	252	143	149	224	351	356	250	275	281
		7/1	211	377	381	124		783	162	630	632
									*		

Table 4.7 Density Estimate \hat{f} .

Life Distribution: W(2,1), Censoring Distribution: E(1). (All entries are to be multiplied by 1.0E-04.)

0											
t (E)	E .	d	Standard Bias Var	Norma f (t)	l Kernel MSE.f (t)	Triangu Bias Va	Triangular Kernel Bias Var.f (t) MSE.f (t))E.Ê (t)	Unifor Bias Va	Uniform Kernel Bias Var.f (t) 1	MSE.Î _n (t)
1023	20	1/5	2008	43	977	1122	116	242	1754	137	445
(513)		1/3	1682	74	357	673	151	196	1193	177	320
		1/2	1071	114	229	257	198	704	552	219	546
	100	1/5	1730	13	312	762	28	98	1269	34	196
		1/3	1029	23	129	280	38	97	576	41	74
		1/2	342	35	47	7	70	70	107	63	79
	300	1/5	1504	5	231	559	6	07	686	11	109
		1/3	653	œ	51	118	16	17	290	14	22
		1/2	94	17	18	- 34	39	07	- 21	31	31
8574	20	1/5	- 2976	97	932	899 -	897	512	-1481	225	977
(6931)		1/3	- 1725	161	458	- 196	866	1001	- 636	545	585
		1/2	- 641	517	558	107	2148	2148	- 28	1049	1047
	100	1/5	- 2104	25	408	- 495	154	178	- 911	90	173
		1/3	- 798	100	164	- 187	387	390	- 330	257	268
		1/2	- 226	341	346	- 95	1016	1016	- 138	692	769
	300	1/5	- 1500	13	238	- 326	69	80	- 581	41	75
	_	1/3	- 407	28	75	- 147	210	212	- 199	131	135
		1/2	- 146	240	242	- 75	929	929	- 168	485	887
7	70	1/5	61	1	7	- 3	0	0	-		1
(29957)		1/3	2	-		9	0	0	0	٣	8
		1/2	7 -	0	0	7 - 7	0	0	1	0	0
	100	1/5	22	0	0	0	0	0	-	0	0
		1/3		0	0	0	1	-	-	1	-
		1/2	0	1	-	-	2	2	-	4	3
	300	1/5	6	0	0	- 3	0	0	- 2	0	0
		1/3	- 2	0	0	7 -	0	0	e -	0	0
		1/2	- 4	0	0	- 3	0	0	-	-	

Table 4.8. Estimated MSE of Kernel Density Estimators

Life Distribution: E(1), Censoring Distribution: U(0,t $_{.90}$) Kernel: N(0,1) (All entries are to be multiplied by 1.0E-04.)

(a) n=50. 25 .30 .35 .45 .50 .55 h .05 .10 .15 .20 .40 .10 980 1130 1280 1450 a. 900 1160 1350 1530 1760 (.23) b. 100 1400 . 25 a. 90 1410 (.58) b. .50 a. (1.15) b. .75 (1.73) b. 2670 1110 .90 (2.07) b. 290 (b) n=100960 1130 1300 1450 .10 a. 880 1150 1350 1560 1750 (.23) b. . 25 a. (.58) b. .50 a. (1.15) b. .75 a. (1.73) b. a. 2130 .90 (2.07) b. 420

a. MSE $\hat{\mathbf{f}}_n$, b. MSE \mathbf{f}_n^{\star}

Table 4.9. Estimated MSE of Kernel Density Estimators

Life Distribution: W(2,1), Censoring Distribution: U(0,t) Kernel: N(0,1) (All entries are to be multiplied by 1.0E-04.)

(a) n=50h .05 .10 .15 .20 . 25 .30 .35 .40 .45 .50 . 55 (t_p) .10 a. (.15) b. .25 a. (.38) b. .50 (.76) b. 920 1130 3020 1230 .75 (1.14) b. 2150 .90 a. 6280 1860 (1.37) b. 1890 90 1250 1920 2550 3380 3360 (b) n=100.10 a. (.15) b. . 25 a. (.38) b. .50 a. (.76) b. 900 1080 .75 a. (1.14) b. 0 a. 3640 1410 (1.37) b. 1350 **840 1450 2760 3540 4720 7980 5760** 7700

a. MSE $\hat{\mathbf{f}}_n$, b. MSE \mathbf{f}_n^*

Table 4.10. Estimated MSE of Kernel Density Estimators

Life Distribution: W(.5,1), Censoring Distribution: $U(0,t_{.75})$ Kernel: N(0,1)(All entries are to be multiplied by 1.0E-04.)

(a) n=50h .05 .10 .15 .20 .25 .30 .35 .40 .45 .50 .55 (t_p) .10 a. 860 1080 (.19) b. .25 a. (.48) b. .50 a. (.96) b. . 75 a. (1.44) b. 7440 5040 2700 1930 1190 a. (1.73) b. 470 270 (b) n=100.10 a. 890 1070 (.19) b. . 25 a. (.48) b..50 a. (.96) b. 0 .75 a. (1.44) b. a. |4320 2410 2090 1530 1170 (1.73) b. 330

a. MSE \hat{f}_n , b. MSE f_n^*

Table 4.11. Estimated MSE of Kernel Density Estimators

Life Distribution: W(.5,l), Censoring Distribution: E(l)Kernel: N(0,l)

(All entries are to be multiplied by 1.0E-04.)

					(a) n=5	0					
(t _p)	h	.05	.10	.15	.20	. 25	.30	.35	.40	.45	.50	.55
.10	a. b.	1390 1520	650 780	4 00 39 0	900 920			3090 3300	3540 3850		4 580 5000	4930 5470
.25	a.	820	380	400	350	200	110	60	50	70	130	180
(.29)	b.	820	4 20	590	59 0	4 10	220	140	70	6 0	90	150
.50	a.	550	190	150	130	110	120	90	130	140	120	140
(.69)	b.	510	180	150	150	150	310	290	4 50	590	550	660
.75	a.	680	520	240	210	130	120	110	110	90	90	100
(1.39)	b.	530	280	150	120	80	60	90	90	110	140	270
.90	a.	1950	650	510	370	350	200	180	150	120	120	100
(2.30)	b.	420	150	90	70	80	50	50	30	40	40	30
					(b) n=1(00					
.10	a. b.	980 1090	360 440	270 260	830 830		2350 2520	2910 3120		4040 4400		48 70 5330
.25	a.	310	260	260	230	140	80	30	30	50	100	150
(.29)	b.	310	310	430	4 70	330	190	100	4 0	30	60	110
.50	a.	310	120	90	50	60	80	80	110	110	100	90
(.69)	b.	300	120	90	60	130	230	310	4 70	490	510	520
.75	a.	380	270	100	70	60	50	4 0	50	4 0	4 0	40
(1.39)	b.	320	160	80	60	50	50	5 0	60	90	150	220

a. MSE \hat{f}_n , b. MSE f_n^*

.90 a. 670 420 290 230 140 (2.30) b. 200 100 80 60 50

Table 4.12. Comparison of \hat{f}_n and f^*_n for Small Samples

K - Standard Normal

 $h(n) = n^{-1/5}$

Life Distribution: E(5) Censoring Distribution: E(1)

(All entries to be multiplied by 10^{-4} .)

f ^o (t)	n		$\hat{f}_n(t)$			f*(t)	
(t)		Bias	Variance	MSE	Bias	Variance	MSE
1900 (2600)	10 20 50 100	- 279 - 639 - 625 - 552	111 449 223 136	119 856 619 440	- 848 - 912 - 815 - 707	46 31 18 12	118 114 85 62
1500 (14400)	10 20 50 100	1552 816 84 - 2	294 288 83 37	534 362 83 37	175 195 129 116	129 127 65 37	132 131 66 39
1000 (34700)	10 20 50 100	242 770 1435 1259	230 314 406 410	236 373 612 568	- 778 - 714 - 480 - 339	35 44 81 86	96 95 104 98
500 (69300)	10 20 50 100	- 474 - 464 - 385 - 373	6 9 48 41	28 30 63 55	- 497 - 498 - 496 - 489	1 0 1 2	25 25 25 26

Table 4.13. Comparison of \hat{f}_n and f_n^* for Small Samples

K - Standard Normal

 $h(n) = n^{-1/5}$

Life Distribution:

E(1)

Censoring Distribution:

E(10)

(All entries to be multiplied by 10^{-4} .)

 $a = \frac{10}{11}$

f ⁰ (t)	n		f _n (t)			f*(t)	
(t)	1	Bias	Variance	MSE	Bias	Variance	MSE
1	10	- 6127	65	3819	- 6242	65	3961
9500	20	- 5913	41	3538	- 6022	41	3668
(513)	50	- 5671	24	3224	- 5771	24	3354
	100	- 5463	17	3001	- 5554	17	3101
	10	- 3568	66	1339	- 3654	68	1402
7500	20	- 3222	42	1080	- 3297	44	1131
(2900)	50	- 2779	24	797	- 2832	25	827
	100	- 2419	18	602	- 2458	18	622
	10	- 865	47	122	- 873	52	128
5000	20	- 562	32	63	- 541	36	65
(6931)	50	- 241	19	25	- 205	19	24
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	100	- 73	13	14	- 35	14	14
	10	383	46	61	408	48	64
2500	20	359	32	45	404	34	51
(1390)	50	274	18	25	325	19	29
	100	203	11	16	240	12	17
	10	107	26	27	56	22	22
500	20	60	15	15	29	14	14
(29957)	50	59	8	8	49	8	8
(100	37	4	4	36	4	5

Table 4.14. Comparison of	\hat{f} and \hat{f} for Small Samples
K - Uniform [-1,1]	$h(n) = n^{-1/5}$
Life Distribution: E(5)	Censoring Distribution: E(1)
(All entries to be multiplie	d by 10^{-4} .) $a = \frac{1}{6}$

f ^o (t)	n		$\hat{f}_{n}(t)$			f*(t)	
(t)		Bias	Variance	MSE	Bias	Variance	MAN.
	10	- 322	176	186	- 622	86	124
1900	50	- 480	42	65	- 582	34	68
(2600)	100	- 381	25	39	- 450	21	42
	300	- 186	11	14	- 208	10	14
	10	1773	840	1153	- 103	289	290
1500	50	- 16	148	148	- 53	122	122
(14400)	100	- 4	72	72	1	70	70
300	- 10	32	32	4	32	32	
	10	142	526	528	- 808	65	130
1000	50	1543	1060	1297	- 1044	144	173
(34700)	100	1320	976	1149	- 415	159	176
	300	221	324	329	- 123	145	147
	10	- 479	9	32	- 495	1	26
500	50	- 376	94	108	- 500	Ō	25
(69300)	100	- 398	69	84	- 486	5	29
ĺ	300	- 241	179	185	- 466	13	35

Table 4.15. Comparison of \hat{f}_n and f_n^* for Small Samples

K - Uniform [-1,1]

 $h(n) = n^{-1/5}$

Life Distribution: E(1) Censoring Distribution: E(10) (All entries to be multiplied by 10^{-4} .) $a = \frac{10}{11}$

f ^o (t)	n		f _n (t)			f_n*(t)	
(t)		Bias	Variance	MSE	Bias	Variance	MS F
	10	- 5570	164	3266	- 5667	158	3 3 6%
9500	50	- 5173	61	2736	- 5254	58	2819
(513)	100	- 4987	38	2526	- 5057	37	259 5
	300	4640	18	2171	- 4699	18	2225
	10	332	152	163	361	160	173
5000	50	210	62	66	237	63	69
(6931)	100	146	42	44	166	43	46
	300	70	18	19	86	19	19
	10	174	158	161	114	159	160
2500	50	100	45	46	108	46	47
(1390)	100	56	26	26	62	26	27
	300	35	13	13	42	13	13
· · · · · · · · · · · · · · · · · · ·	10	25	52	52	- 31	43	43
500	50	21	15	15	2	14	J4
(29957)	100	28	8		! - 6	8	
	300	8	3	8 3	7	3	8 3

standard normal density seems to be the best choice. Other kernel functions which closely fit the standard normal (Parzen, 1962) may perform as well but were not included in this study. The estimator \hat{f}_n is fairly robust with respect to the life distribution, and \hat{f}_n performs well near the "center" of the life distribution regardless of whether the censoring distribution is exponential or uniform.

From the results represented by Tables 4.8-4.11, it is evident that for each x, the estimated MSE appears to have at least a relative minimum of some value of h. These seem to occur near the values $n^{-1/2}$, $n^{-1/3}$, ∞ $n^{-1/5}$, although it seems to be difficult to prove this result analytically, as mentioned before. Based on these results and the results represented by Tables 4.1-4.7 that the estimated variances of \hat{f}_n increase as horange from $n^{-1/5}$ to $n^{-1/2}$, the value $h=n^{-1/5}$ or $n^{-1/3}$ seems to be a reasonable choice for the bandwidth in practice.

The above conclusions indicate that the bias, variance, and mean square error of $\hat{f}_n(t)$ decrease as a becomes larger, regardless of the life distribution or censoring distribution. This leads to the conjecture that the asymptotic results of McNichols and Padgett (1981) hold without the condition of the Koziol-Green (or proportional hazards) model of random censorship. Most of the cases simulated do not satisfy the condition of that model. An analytical proof of this conjecture, however, would be quite difficult.

The simulation results represented by Tables 4.8-4.11 indicate that, with respect to estimated mean squared error, f_n^* and \hat{f}_n behave similarly as the bandwidth values vary. The simulations (Tables 4.12-4.15) also indicate that the Blum-Susarla estimator f_n^* and the estimator \hat{f}_n perform about the same with respect to bias, variance, and mean squared error when a = P(unccusered observation) is larger than 0.5. When a < 1/2, f_n^* tends to have smaller

variance and mean squared error than f_n . This can probably be explained by noting that f_n^* depends upon having a good estimate of the censoring survival function 1-H in the denominator, and when there is a large portion of the observations which are censored, the denominator H_n^* of (3.1) would give a good estimate of 1-H. Hence, when a is small, f_n^* would generally provide a better density estimate than \hat{f}_n with respect to smaller variance and mean squared error.

ACKNOWLEDGMENTS

The authors are grateful to the referee and Associate Editor for their very helpful suggestions which improved this paper and to Clara Day for help in computer programming for the results of Section 4. The first author was supported during the revision of this paper by the U.S. Air Force Office of Scientific Research and Army Research Office under grant number AFOSR-84-0156.

REFERENCES

- Bean, S. J. and Tsokos, C. P. (1980). Developments in nonparametric density estimation. <u>Intern. Statist. Rev. 48</u>, 215-235.
- Blum, J. R. and Susarla, V. (1980). Maximal deviation theory of density and failure rate function estimates based on censored data. <u>Multivariate Analysis V</u>, P. R. Krishniah, Ed., North-Holland, New York, 213-222.
- Breslow, N. and Crowley, J. (1974). A large sample study of the life table and product limit estimates under random censorship. Ann. Statist. 2, 437-453.
- Chen, Y. Y., Hollander, M., and Langberg, N. A. (1982). Small-sample results for the Kaplan-Meier estimator. J. Amer. Statist. Assoc. 77, 141-144.
- Cox, D. R. (1972). Regression models and life-tables. J. Royal Statist. Soc. B34, 187-220.
- Csörgő, S. and Horváth, L. (1981). On the Koziol-Green model for random censorship. Biometrika 68, 391-401.
- Efron, B. (1967). The two sample problem with censored data. Proc. Fifth Berkeley Symp. Math. Statist. Prob. 4, 831-853.

- Földes, A. Rejtö, L., and Winter, B. B. (1980). Strong consistency properties of nonparametric estimators for randomly censored data, I: The product-limit estimator. Periodica Mathematica Hungarica 11, 233-250.
- Földes, A., Rejtö, L., and Winter, B. B. (1981). Strong consistency properties of nonparametric estimators for randomly censored data. Part II: Estimation of density and failure rate. Periodica Mathematica Hungarica 12, 15-29.
- Fryer, M. J. (1977). A review of some non-parametric methods of density estimation. J. Inst. Maths. Applics. 20, 335-354.
- International Mathematical and Statistical Libraries (1980). IMSL, Inc., 7500 Bellaire Blvd., Houston, Texas, USA.
- Kaplan, E. L. and Meier, P. (1958). Nonparametric estimation from incomplete observations. J. Amer. Statist. Assoc. 53, 457-481.
- Koziol, J. A. and Green, S. B. (1976). A Cramer-von Mises statistic for randomly censored data. <u>Biometrika</u> 63, 465-473.
- Lagakos, S. W. (1979). General right censoring and its impact on the analysis of survival data. Biometrics 35, 139-156.
- McNichols, D. T. and Padgett, W. J. (1981). Kernel density estimation under random censorship. Statistics Tech. Rep. No. 74, University of South Carolina.
- McNichols, D. T. and Padgett, W. J. (1984). A modified kernel density estimator for randomly right-censored data. S. African Statist. J. 18, 13-27.
- Michael, J. R., Schucany, W. R. and Haas, R. W. (1976). Generating random variates using transformations with multiple roots. Amer. Statist. 30, 88-90.
- Miller, R. G. (1981). Survival Analysis. John Wiley & Sons, New York.
- Padgett, W. J. and McNichols, D. T. (1984). Nonparametric density estimation from censored data. Commun. Statist.-Theor. Meth. B, 1581-1611.
- Parzen, E. (1962). On estimation of a probability density function and mode. Ann. Math. Statist. 33, 1065-1076.
- Rosenblatt, M. (1956). Remarks on some nonparametric estimates of a density function. Ann. Math. Statist. 27, 832-837.
- Rosenblatt, M. (1976). On the maximal deviation of k-dimensional density estimates. Ann. Prob. 4, 1009-1015.
- Scott, D. W. and Factor, L. E. (1981). Monte Carlo study of three data-based nonparametric probability density estimators. J. Amer. Statist. Assoc. 76, 9-15.

- Tapia, R. A. and Thompson, J. R. (1978). Nonparametric Probability Density Estimation. The Johns Hopkins Univ. Press, Baltimore.
- Wegman, E. J. (1972a). Nonparametric probability density estimation, I. A summary of available methods. Technometrics 14, 533-546.
- Wegman, E. J. (1972b). Nonparametric density estimation: II. A comparison of density estimation methods. J. Statist. Comput. Simul. 1, 225-245.
- Wellner, J. (1982). Asymptotic optimality of the product limit estimator. Ann. Statist. 10, 595-602.
- Wertz, W. and Schneider, B. (1979). Statistical density estimation: a bibliography. <u>Intern. Statist. Rev. 47</u>, 155-175.

END

FILMED

1-85

DTIC